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. ABSTRACT

This paper presents a new extremal approach to deriving dual
optimization problems with proper duality inequality which simplifies
and generalizes the Fenchel-Rockafellar scheme. Our derivation proceeds
in two stages, (i) inequality attainment, (ii) decoupling primal and dual

variables. The power and convenience of this approach are exhibited

through a new, much simpler derivation of the Charnes-Cooper resuits
for Khinchin-Kullback-Leibler statistical estimation [1], the immediate
establishment of the C2 duality for general distributions and its extensions

to general linear inequality constraints, plus the development of a new

two-person zero-sum game connection.
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0. Introduction

L e

In [1) Charnes and Cooper established a duality with three mutually
exclusive and collectively exhaustive (MECE) duality states for constrained

K2L (Khinchin-Kullback-Leibler) statistical estimation with finite discrete

5T PP,

distributions. Their dual problems are

(D max v(8) = - 8Ton o)

wi ATA 55" 85
and
Az _ T

(II) inf €(z) = cTe 2

Extensions to general distributions were developed in (2] by Ben-Tal and
Charnes using function space settings and some generalized Fenchel-Rockefellar
duality theory [3]. The"F-R" theory was also employed by Ben-Tal and
Charnes inf8] to develop a general class of non-linear inequality constrained
convex programming problems with unconstrained duals as in the above
"c2" quality.

This paper presents a new extremal approach to deriving dual optimiza-
tion problems with proper duality inequality which simplifies and generalizes
the Fenchel-Rockafellar scheme. Our derivation proceeds in two stages,
(i) inequality attainment, (ii) decoupling primal and dual variables. The power

and convenience of this approach are exhibited through a new, much simpler

derivation of the Charnes-Cooper results for Khinchin-Kullback-Leibler
statistical estimation [1], the immediate establishment of the C2 duality for
general distributions and its extensions to general linear inequality constraints,

plus the development of a new two-person zero-sum game connection,

The latter dualities as well as extensions to general classes of convex

functionals a la [4] are being developed elsewhere by Charnes, Cooper,

Seiford and Palacios.




1. The Extremal Principle

We restrict the presentation here to convex programming dualities.
(The general case involves only the obvious deletion of the convexity (concavity)
requirements.) There are two aspects to the principle. The first is the achieve-
ment of the duality inequality. The second is ''decoupling' the variables
of the dual problems.
Let K(§, x) be a real-valued function concave in 8 for (8, x) ¢
A X €R™ x R® . This function is chosen so that g(d = i%f K(8, x) exists
for each 6 € A . (Thereby g(6) is a concave function of 8).
For convexity re x and then decoupling, let x = T(z) map Z, a convex
set in R", into X. Let K( 8,x) = f(z), a convex function, forz e Z, 8 ¢ .

Thus " @ T(Z) is the decoupling set for (8, x). For convexity in § we

require A A to be a convex set.

Clearly, then, the duality inequality ie established
(1) g(8) =f(z), véeanP,VzeZ
Further, the problems

(I11) sup g(8), 8 eanl

E and

; | (IV) inf f(2), 2z € Z

b‘ are dual convex programming problems. Existence or nonexistence of
2:; duality gaps is clearly dependent on the choices of AM and Z.
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2. The Dual Problems for Discrete K2-L Estimation

Consider the function of two real variables §, x,
(2) K (8,x) & ceX - 6x, where c, 8§ 2 0.

Then for ¢ > 0 and § 29,
(2.1) g(8) = igf K(8, x)= -8or ('6'56), where e is the base of the Napierian
logarithms, and we set 0 - n (0) = 0,

Note that if ¢ =0 with & 2 0, then we must restrict x above, e.g.
x < 0, in order that g(8) exist.

Staying with ¢; > 0 and introducing 8;, x; 2 0, we have
(2.2) v(8) = - 8;0r (—gt) s T lee™ - 8x),
for all 8¢2 0 and all x.

Next, suppose
(2.3) x, = ?_, ajj z; and ? 8;ajj = bj,
for constants ajj and bj.
Then, in vector-matrix notation,
(2.4) v(8) <¢(z) ®cTebz-bTy
for § 20, 6TA = bT and z unconstrained.
Thus (I) and (II) are established as dual convex programs satisfying the
duality inequality (2.4).

Further, they are established for the general discrete distribution
case where the {x;} {41 {zj} are sequences for which the sums in (2. 2),
(2.3) exist. For example, we could have x, §, z in the sequence space

(£1) and,thereby, A a linear transformation from (4) into (£,).




3. The Charnes-Cooper Duality States

; Clearly, from (2.4), B(z) is bounded below provided that 8 2 0, 8 A=bT
' has a solution. Suppose it does not. Consider the dual 1. p. problems:
(3.1) max b1z and min 6L - 0

Az g0 8Ta =
520

¥ 5

o
¥
H
|

By the extended dual theorem [ 5] , since z = 0 satisfies Az < 0, there exists

a sequence z" such that Az" <0 and blz" += . But then,

n
F(zn) =cTe Py e bTzP s cTe -pTz" 4 - =

Thus we have established duality state 1 e.g.:
T

—
. &

inf(z) =-o iff820,8 YA =b" has no solution.

Next, suppose @(z) has a minimum. Since ?(z) is differentiable and

e

convex amd z is unconstrained, the gradient must vanish at z*, a minimum,e.g.

3.2) g . . § 27" S R §
i ¢ i€ aij j 4 S o

J
* aiiz*s
But set O1 ® Cie? N"J | Then 8{ >0 foralli and §Ta =T,

T
X &t o
g

Note that for this choice |3

e Dt (54) - * o5t 81
(3.3) v(8%) = -Z 87 0n (e—c‘,) % 6% -F 8 m (T{
* £ % K T*
=T -*P.bi (Az*)=Z & -b z
A
e -sz*=min§(z)

Hence v(b*) = max v(8), § 20, 6TA = bT, and min p(z) = max v(8).

Conversely, suppose & 20, 5TA £ bT has a solution & > 0. Then

SI8:Z
(3.4) B(2) =;13 cel e B 'Kl ;L') a5 z% .

R R TR TR
%Y ¥ " e g
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But the function of one variable x, with C;» 6‘1 >0,
(3.5) Pjx) =cje* - 3ix + +toggxate

Hence if z" is a sequence for which
(3.6) B(z") = inf §(2)
we cannot have tAzn = ? aijz’; 4+ +o: withn 4=
Since the iAzn are thereby bounded, we can choose a subsequence, again
denoted z", so that
(3.7) jAzR = a,, all i

Applying the Farkas-Minkowski Closure Corollary (FMC?2) [6] we
conclude there exists z" such that iAz* = a;, all i.

But then
(3.8) inf B(z) = tla-”@ B(z") = PR 1 =§(z*)

i.e. ¥(z) has a minimum at 2",

Thus state 3 is established:

(2) has ‘& minimam £ 8° >0, 8TA = bT has a solution and min §(z)=

max v(8).
By exhaustion, then, state 2 is es‘tablisheci :
Q(z) has only an infimum iff7-;rbi = 0 in every solution to 8 20,
8Ta = b" .
To obtain the further properties in state 2, we note first that since

- R T »
there exists § 20, § A =b , we can write

(3.81) B (2) =:E cie(iAZ) - § (iAz)}

Scsic 2
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Now suppose $(z") = inf &(z) and that (w.1l.0.g.) (iAz“) +aj, ie D,

0 for r ¢ D).

(pAzP) # - r ¢ D. (Clearly bp
By the FMC2 , there exists % such that {AZ =a;, i ¢eD, pAZS1, r ¢ D.

Then ;A(zP-z)#0, i ¢Dand rA (z"-32)+-o r ¢ D. By;the FMC?2, there

exists ¥ such that ;AZ = 0, i € D, (A% < -1

Then jA(Z +pzZ)=a;, ieD, AR +pZ) 2-2asp+®

Thus z; (z +pZ) inf & (z) as p - «.

But
(3.82) @ (z +p2) = if?D { ¢ eiBZ .5 (;a%) .} + rZED ¢cp e ¥AET pz)
and
5 4n3) = i _ iAz _ ; oo A2 T
(3.83) lf).""“’ ¢(z +pZ) = inffez) = ize>D { cie - & iAZ)} -iZeD cije £ .p'2

Now GD(z) = EID { cielAz - Ei(Az)} has a minimum at say z ,
i ls

since Ei >0, ieD andi%%i (jA) = b 3
Thus ¢ p) s¢gp) . If €p(E <¥¢p (2) , then

,b-"‘" ¢z +p2)= €p(z) . < ¢p(2) = inf € (z), a contradiction.

So ¢ p(2) = min @p(z) = inf &(2)

Then v(3) = infz) where 8; ={:ielAz , iel
A 0 i ¢1

Hence v(8) = max v(8) « £

Thus a 8" exists and by uniqueness 8%= 3.
The further properties of state 2 are thereby established, e.g. :

(3.9) inf €(z) = max v (8) = min ép(z) .




As noted by Charnes and Cooper in (1), the duality state may be B

j A ? characterized by means of the linear program: ]
. 3

i' (3.91) max u ‘
:’1_ 2 ueT -8x<0

. ‘?*. ' bTA =bT

ik 820

State 1 corresponds to infeasibility, state 2 to u*=0, state 3 to W* >0,

4. The C2 Duality For General Distributions

From the (two real variable) result in (2) and (2.1). we can write

H (41) -6(t) tn r%(cl)m] s ct) XM sitixce),
where c(t) >0, &(t) 20. l

Taking u(t) as a non-negative Radon-Stieltjes measure, then, assuming

existence ' of the integrals,

(4.2) w(o) = - fowun( 2y dut) < fle®e™® - st)xt)auw

3 Let

p x(t) = [A(t, s)z(s)dv(s) , and

(4.3)

1 (8t) Att, ) du) = bis)

where v(s) is a Radon-Stieltjes measure, and convergence of integrals is

assumed. Then (assuming Fubini's theorem holds),

@9 vy =- fswrr (-2 duw) ¢ Blz), ana

B(2) = §{ct) exp [[A(t, 5) 2(s) dms)] duct) - [b(s)z(s) dns)

when (4.1 and (4. 2) hold.

Clearly with &(t) = f4(t), c(t) > 0 (except on a set of u-measure zero)
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corresponding to fo(t), in Kullback's notation [ 6 ], we have here exhibited
the Charnes-Cooper dual programs for the case of general distributions. Note
for special choice of v that s takes on only a finite number of values as in
Rockefellar's or in Ben-Tal's and Charnes' work. This is the important

case in statistical estimation of a finite number of constraints. Thereby §(z)

involves only an unconstrained finite vector z.

5. A Game-Theoretic Connection

We can also connect the C2 -duality with a saddle-point or two-person
zero-sum game. For, let
(5.1) K(8,x) =2 (cje™t - 8;x;)

i

be the payoff to the "6-player' from the "x-player:' Let the
respective strategy sets A, X be defined by

p=(s: 8Ta=bT, 820}
(5.2)

X = {x: x=Az}

Clearly

) < sup inf K(§, x)

6.
(5.3) sup v(8)=sup-Z8in (ec‘,
i . & "X

A A
But

(5.4) sup inf K(8, x) < inf sup K(5, x)
A X X A

whenever both sides have meaning.

Also,
inf sup K(§, x) = inf sup (cTeAz - GTAz)
X A z A
(5.5) = inf (cTeAz - sz), when A # f,
z
= inf (z)
z

From the C2 duality theory, then sup v(8) = ixzaf B(z)

¥
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Thus,

Theorem: sup inf K(8, x) = inf sup K(8) whenever A # 0
i X A

Or more sharply,

max inf K(8, x) = inf max K(8, x) whenever A # 0.

6, A More General Inequalities Form

Suppose we wish to consider discrete K2L estimation of the

form
(6.1) max v(6) = “67 on [‘E‘C‘é]
subject to sTa 1 & plT
) 2 0
(6.2) The constraints may be considered equivalently as
Ty R |
sTads T 43T
T, vT= o

By the remark on c=0 in 5 2,

we may write a duality inequality as

5 ; 6' X3
R e e
Pom (] 0 <7 e um Ty
with (6. 2) holding as well as
(6.4) yr €0, iel,

To decouple we must choose representations of the X ¥y 80 that (6.2)

represents the "' T " and so that Z comprehends (6.4). In vector form we want

(6.5) 6Tx + yTy = bszl + b2Tz2
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It suffices to have

@6.6) (8T, yT) lal a2 |z . @IT, u27T) [zl
0 I 72 z2

or,

(6.7)

X A:l A2 z1 2
o Tl 1 22 with z¢ <0

The dual problems are now

oy

(1h max v(8) = 6T gn [éa
hin [;T' YT] il ind $ [blT. sz]
0 1
, 8, v 20
and
: . T. (Alz! + A222) 1T 1 2T 2
(Ir) inf € (z) = cTe -b "z> -b"z

with -z2 20

As might be expected, there are three duality states. These may
be established as above and characterized by the solution of the 8-constraint
system (6.1). These results have been considered by a different method
by F. Palacios (a student of Charnes ).

The duality generalization to arbitrary statistical distribution functions

is, of course, immediate, as follows.

<RI IR R T
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The dual problems are

(1) o ov(fy) = - £, om(f1 \q
sup : v(fy 5.1”1(-‘375) o

with § 1,0 A (¢, 0) au ) bi(s), s €S,

-

J 110 A% t,5) dutt) + gls) = b2(s), s € S,
T

fy(t), g(s) 2 0, teT, s €S, :

n
ST o
Sl cinon dahidant by B R e e

(fg is given and greater than zero a.e. -u)
and

(V") inf: §2) = i) exp [ § Al s) 2l(s) an! (e + § a2, o) 2%s) arZ(sNau -
T S S
1 2

- §blis) 21(s) aalis) - §b2(s) 22(s) ar? (s)
S1 S2
: 2
with 2%(s) £0, s €5,
where, of course, the duality inequality
(6.8) vif]) £ {(z) holds for f,(t), g(s), z2(s)

constrained as in (III'), (IV') and for suitable convergence of the

integrals.

7. Concluding Comments

The Charnes-Cooper extremal principle herein enunciated is more
general than the Fenchel-Rockefellar construction with the Legendre
transformation(their K(8, x) concave furctioneof '"8" is always linear in 8.

As illustrated above, the principle's simplicity and concreteness should make

it a useful tool for the practicing analyst.
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A special instance of the game-theoretic connection is being

employed by Charnes, Cooper and Schinnar in current research to elucidate

- - oty B Sl I St B e,

economic phenomena in a cartel economy.

The generalizations to functions other than our (v8), ¢(z) and the

precise characterizations of the ''non-discrete'' dualities are also to be

S ol

i

{
published elsewhere. These are important for problems of statistical ?
inference with linear inequality constraints since the dual problem is
3 not so encumbered. Further they apply directly to problems involving

the evolution of macroscopically irreversible systems from microscopically

reversible systems, as developed, for example, by B. O. Koopman [ 7].
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